Lipid-protein interactions in thylakoid membranes of chilling-resistant and -sensitive plants studied by spin label electron spin resonance spectroscopy.
نویسندگان
چکیده
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.
منابع مشابه
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes.
Lipid-protein interactions in thylakoid membranes, and in the subthylakoid membrane fractions containing either photosystem 1 or photosystem 2, have been studied by using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The electron spin resonance spectra of the spin-labeled lipids all consist of two ...
متن کاملProtein rotational mobility and lipid fluidity of purified and reconstituted cytochrome c oxidase.
The rotational mobility of spin-labeled bovine heart mitochondrial cytochrome e oxidase in purified form, and incorporated into lipid vesicles was studied. A rigidly attached short chain maleimide spin label permitted the measurement of the protein’s overall rotational mobility by saturation transfer electron paramagnetic resonance. A long chain maleimide spin label was used to detect he fluidi...
متن کاملLipid-protein interactions in membranes.
The interactions of lipids with integral and peripheral proteins can be studied in reconstituted and natural membranes using spin label electron spin resonance (ESR) spectroscopy. The ESR spectra reveal a reduction in mobility of the spin-labelled lipid species, and in certain cases evidence is obtained for a partial penetration of the peripheral proteins into the membrane. The latter may be re...
متن کاملProtein assembly and heat stability in developing thylakoid membranes during greening.
The development of the thylakoid membrane was studied during illumination of dark-grown barley seedlings by using biochemical methods, and Fourier transform infrared and spin label electron paramagnetic resonance spectroscopic techniques. Correlated, gross changes in the secondary structure of membrane proteins, conformation, composition, and dynamics of lipid acyl chains, SDS/PAGE pattern, and...
متن کاملLipid-protein interactions in stacked and destacked thylakoid membranes and the influence of phosphorylation and illumination. Spin label ESR studies.
The effects of membrane destacking, protein phosphorylation, and continuous illumination have been studied in pea thylakoid membranes using ESR spectroscopy of an incorporated spin-labelled phosphatidylglycerol. This spin-labelled analogue of an endogenous thylakoid lipid has previously been shown to exhibit a selectivity of interaction with thylakoid proteins. Neither destacking, phosphorylati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 28 شماره
صفحات -
تاریخ انتشار 1990